B Physics at CDFII

XXXVIIIth Rencontres de Moriond

Electroweak Interactions and Unified Theories

March 15th-22nd, 2003 Les Arcs

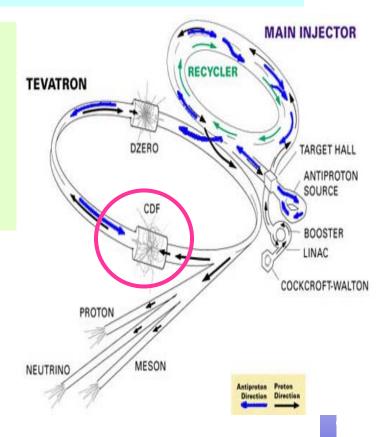
Diego Tonelli

tonel@fnal.gov

Scuola Normale Superiore & INFN - Pisa

for the CDFII Collaboration

Tevatron pp collider

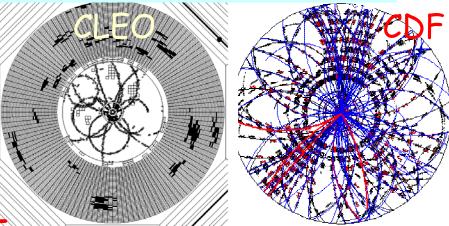

- ✓ Main Injector: injector optimizes p production
- ✓ Recycler: store and cool p̄ (ready 2004)
- ✓ Collision rate: 396 ns crossing time
 (36×36 bunches) → ~ 2M collisions per second
- ✓ Center of Mass energy: 1.96 TeV

Today: record luminosity: 3.7×10^{31} cm⁻²s⁻¹

4 to 7 pb⁻¹ /week delivered

Goal: inst. luminosity: $O(1) \times 10^{32}$ cm⁻²s⁻¹

16 pb-1 /week delivered


Results of this talk based on $\int Ldt \le 70pb^{-1}$

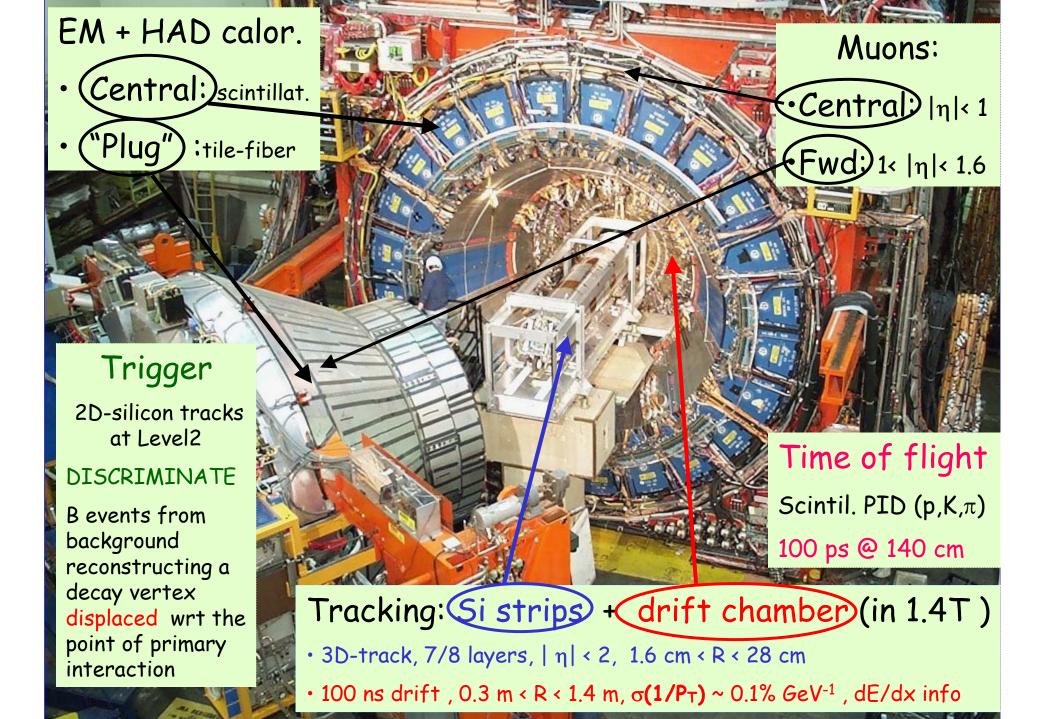
Feb2002

Dec2002

B physics at pp collider

- \checkmark x-section bb is $O(10^5)$ larger than e⁺e⁻ @ $\Upsilon(45)/Z^0$
- ✓ Open wide spectrum of B hadrons: B^{\pm} , B^{0} , B_{s} , B_{c} , Λ_{b} , Ξ_{b}

- Total inelastic x-section: $\sim 10^3 \times \sigma(bb)$
- BRs for interesting processes: ~O(10-6)
 - S/B at production @ Tevatron is: ~ 1/109
 - S/B at production at B-factory ~ 1/106
- Mean multiplicity of tracks/event ~ ×4Y(45)
 - Combinatoric background
- Events pile-up within the same beam x-ing
 - Combinatoric background
 - Typical S/B at analysis level: $\sim O(0.5 \div 5)$


THE SOLUTION:

Vertex detector

+

Trigger

B Triggers and data samples

Larger yield: lower Pt threshold wrt RunI: $e(\mu)$: 8 (2.2) \rightarrow 4 (1.5) GeV

Better $5/N \rightarrow$ trigger on long-lived decays (displaced tracks)

Di-Muon (J/ψ)

 $Pt(\mu) > 1.5 GeV$

 J/ψ modes down to low Pt(J/ψ) (~ 0 GeV)

- CP violation
- Masses, lifetimes
- Quarkonia, rare decays

Displaced trk

+ lepton (e, μ)

 $IP(trk) > 120\mu m$

Pt(lepton) > 4 GeV

Semileptonic modes

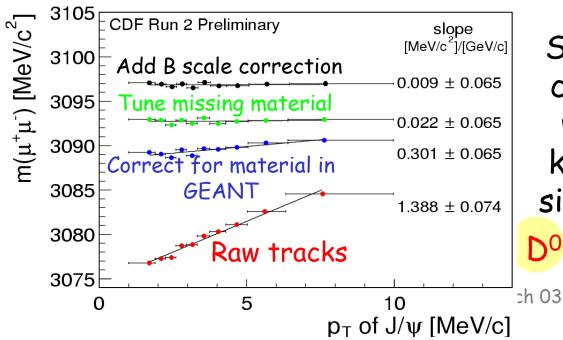
- High statistics lifet.
- Sample for tagging studies

2-Track Trig.

Pt(trk) > 2 GeV

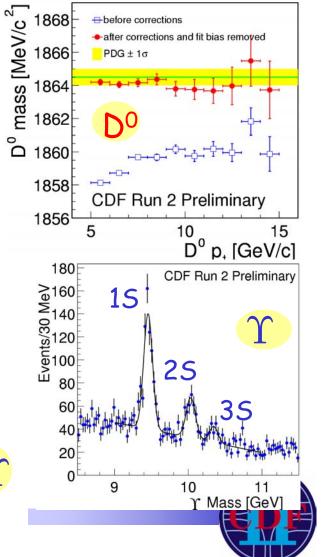
 $IP(trk) > 100 \mu m$

fully hadronic modes


- B_s mixing
- CP asymmetry in 2-body charmless decays

Detector calibration: p scale & B-field correction

MASS SCALE: $M_{CDF} = M_{PDG} - \Delta M(Pt)$


Use J/ψ to correct for B field and energy loss:

 σ (scale)/scale ~ 0.02%

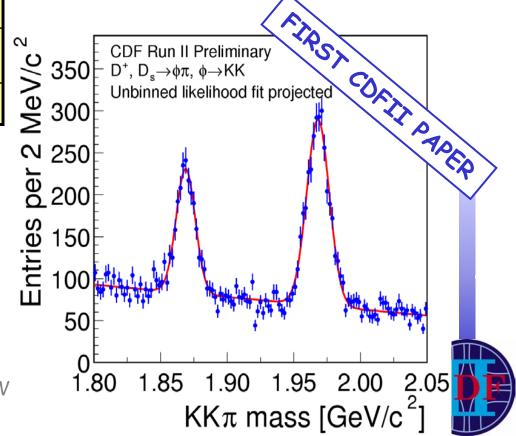
Sanity check with known signals:

Mass measurements

	CDF mass (only ~20 pb ⁻¹)	$\Delta_{ t PDG} / \sigma_{ t CDF}$
B⁺	5280.6 ± 1.7 ± 1.1	0.8
B _d	5279.81 ± 1.9 ± 1.4	0.2
B _s	5360.3 ± 3.8 ± 2.1 2.9	-2.1
ψ(25)	3686.43 ± 0.54	0.9

D_s^{\pm} - D^{\pm} mass difference

Both $D \rightarrow \phi \pi (\phi \rightarrow KK)$


 $\Delta m = 99.28 \pm 0.43 \pm 0.27 \text{ MeV}$

PDG: 99.2 ± 0.5 MeV

(CLEO2, E691)

Systematics dominated by background modeling

M(B_s) is already the second best in the world (after CDF RunI)

Exclusive lifetime $B_s \rightarrow J/\psi \phi$

Probe of CDFII vertexing performance

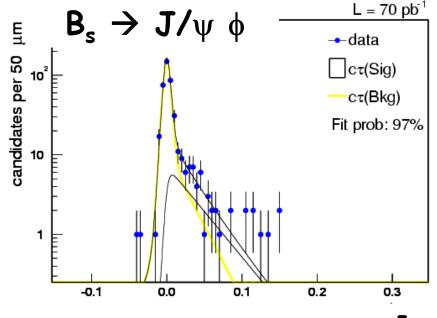
Important for simultaneous measurement

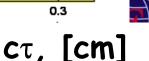
B+

 B_d

$$\frac{\mathsf{T}(\mathsf{B}_{\mathsf{s}})}{\mathsf{T}(\mathsf{B}_{\mathsf{d}})}$$

Lifetime (ps) $1.57 \pm 0.07 \pm 0.02$ $1.42 \pm 0.09 \pm 0.02$ $1.26 \pm 0.2 \pm 0.02$


Systemat. & statist. errors already @ Run I level


$$\frac{T(B_s)}{T(B_d)} = 0.89 \pm 0.15$$

$$\frac{T(B^{+})}{T(B_{-})} = 1.11 \pm 0.09$$
)F - Moriond EW -

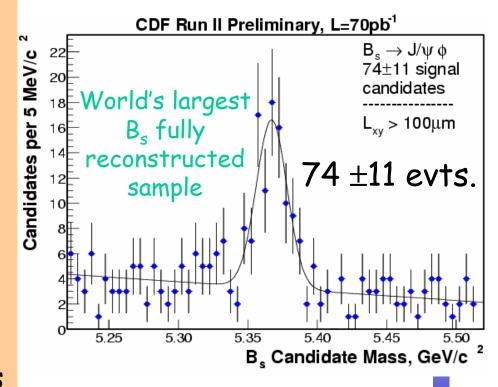
Use control channels: $B_u \rightarrow J/\psi \ K^+$ and $B_d \rightarrow J/\psi \ K^{0*}$

Main systematics from alignment and resolution function

B_s (1): from di-muon

 $B_s \rightarrow J/\psi \phi \rightarrow [\mu\mu]$ [KK] ONLY @ Tevatron

Weak phase of V_{ts}:


Time-dependent asymmetry in decay rates. (quick oscillat.)

Needs tagging

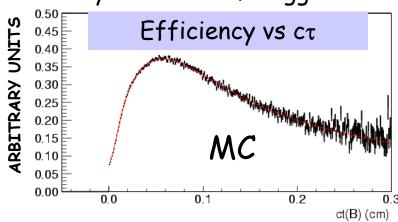
Mix of CP-odd/CP-even states

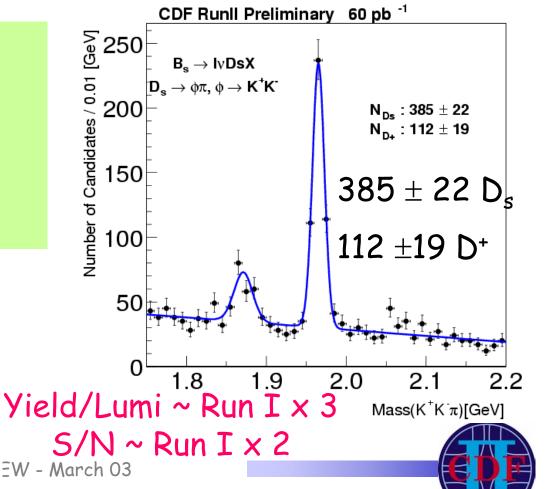
- → additional dilution
- → angular analysis required
- $\Delta\Gamma_{s}$:

Exclusive lifet + angular analysis

Yield/Lumi = 2 x RunI

B_s (2): from: lepton + displaced track


 $B_s \rightarrow D_s I_V \rightarrow [\phi \pi] I_V \rightarrow [[KK] \pi] I_V \bigcirc NLY \bigcirc Tevatron$


HIGH STATISTICS SAMPLE:

- Inclusive lifetime: $\rightarrow \frac{\Gamma(B_s)}{\Gamma(B_d)}$
- Mixing (moderate X_s):

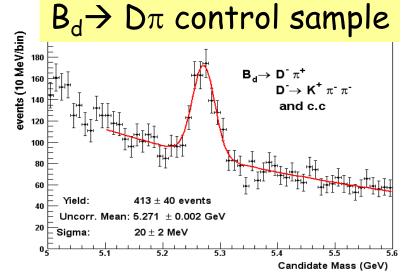
good S/N, limited time resolution: back-up sample

Systematics of trigger bias

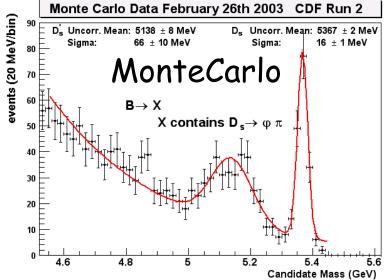
B_s (3): from 2-Track Trigger

Many fully reconstructed channels

ONLY @ Tevatron


$$B_s \to D_s^{(*)-}, B_s \to D_s^{(*)} \bar{3}\pi,$$

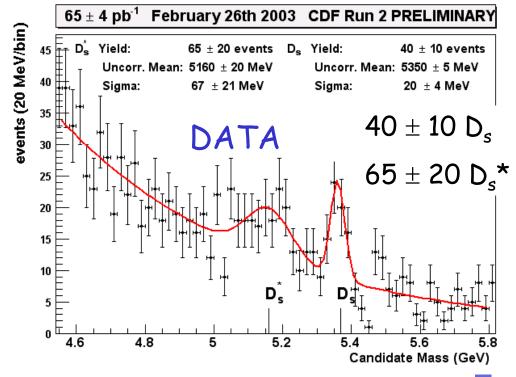
 $B_s \to D_s^{(*)-} D_s^{(*)+}$


Combine them to reach high statistics

• B_s mixing: "golden sample" for $x_s \rightarrow \Delta M_s$

Needs:

- Excellent proper time resolution
- Good flavour tagging

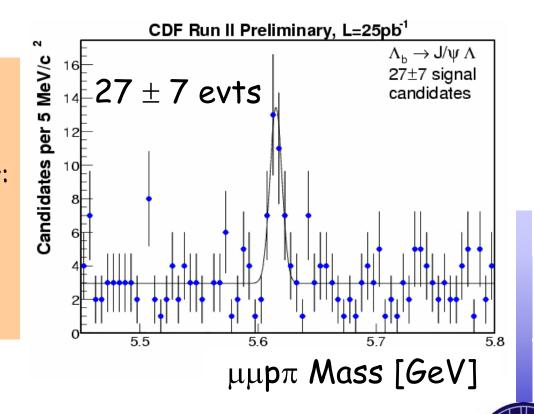

B₅ (3): from 2-Track Trigger

 $B_s \rightarrow D_s^{(*)}\pi \rightarrow [\phi\pi] \pi \rightarrow ([KK] \pi] \pi DNLY @ Tevatron$

Fully reconstructed

Promising:

other hadronic channels to be seen soon



Λ_b (1): from di-muon

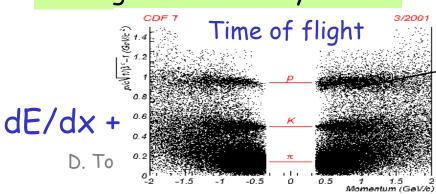
 $\Lambda_b \rightarrow J/\psi \Lambda \rightarrow [\mu\mu][p\pi]$ ONLY @ Tevatron

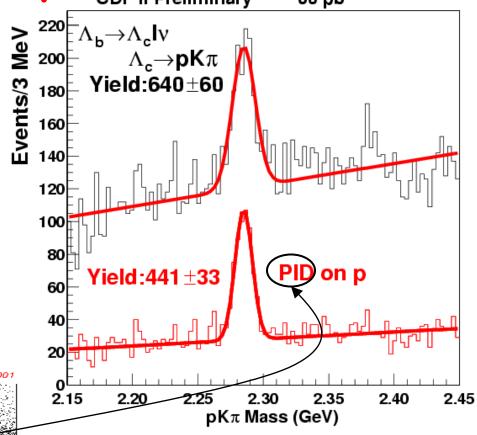
Fully reconstructed

- Lifetime $\Rightarrow \frac{T(\Lambda_b)}{T(B^0)}$ discrepancy with theory: is it valid for baryons?
- Mass

Λ_b (2): from lepton + displaced track $\Lambda_b \rightarrow \Lambda_c |_{V} \rightarrow [pK\pi] |_{V}$ ~ 220 ~ 100 ~ 100

· Branching Ratio


• Measure $\rightarrow \frac{1}{\Gamma} \overline{dQ^2}$


$$Q^2 = m(Iv)$$

important for theory

Experimental challenge:

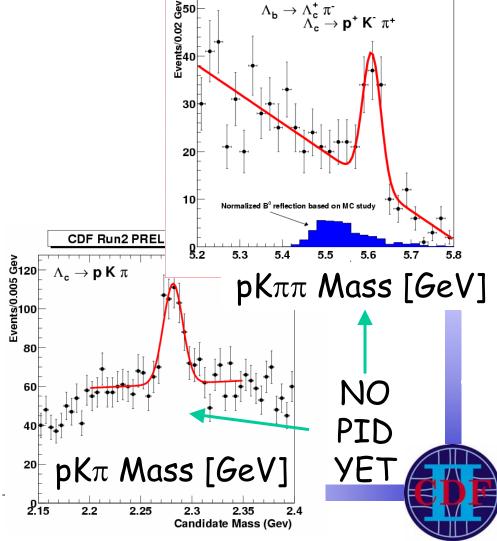
disentangle from decays through excited baryons

Yield/Lumi = 4 x RunI

 $S/N \sim 2 \times Run I$

Λ_b (3): from 2-Track trigger

 $\Lambda_b \rightarrow \Lambda_c \pi \rightarrow [pK\pi] \pi$


Fully reconstructed channel

high resolution on secondary vertex

• Precise Lifetime $\Rightarrow \frac{T(\Lambda_b)}{T(B^0)}$

Discrepancy with theory: Is it valid for baryons?

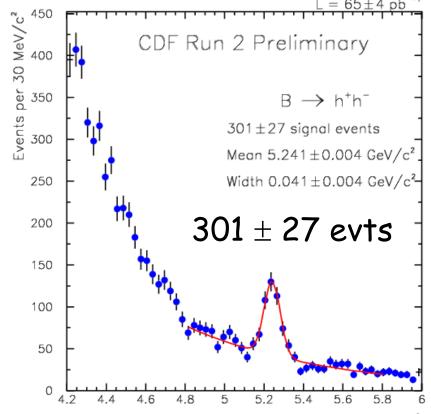
BR still unknown

CDF Run 2 PRELIMINARY 65pb⁻¹

B→h+h- from 2-Track Trigger

 $B_d(B_s) \rightarrow K\pi$, $\pi\pi$ (KK, K π) FIRST charmless B @ hadronic coll.

CP asymmetry $\rightarrow \sin 2(\beta + \gamma)$

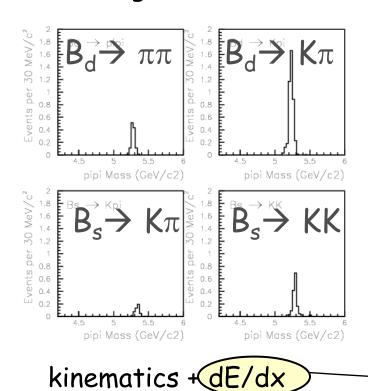

- -Time dependent analysis
- -Tagging
- Exploit x >> xd

Direct CP violation in $B_d \rightarrow K\pi$

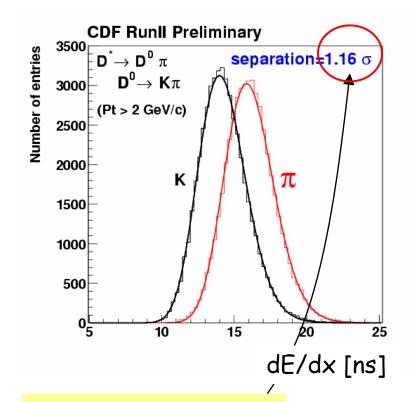
-self-tagging

Extract yield of each individual channel:

- Branching Ratio $B_s \rightarrow KK/K\pi$


S/N better than expectations

ππ Mass [GeV]


B→h+h- from 2-Track Trigger

Experimental challenge:

Disentangle 4 channels:

D. Tonelli - B Physics at CDF - Moriond EW - Mc

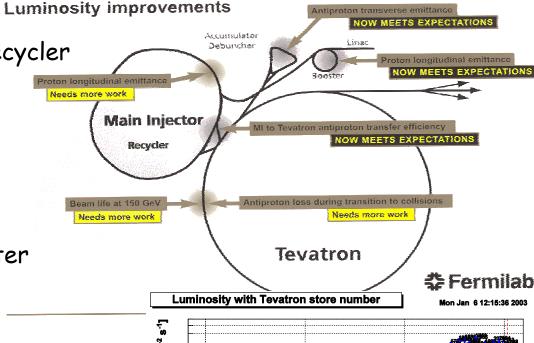
Final resolution expected is

 σ_{Acp} ~O(15%)

Summary and Conclusion

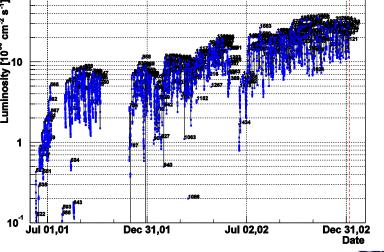
CDFII today: the detector is well calibrated, scale of masses and vertexing resolution are accurately understood providing lifetimes and mass measurements already competitive with RunI results.

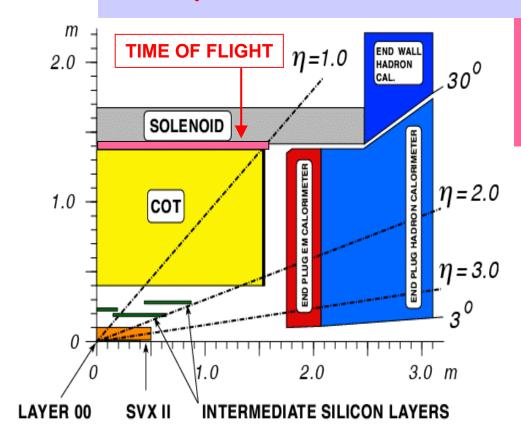
Promising perspectives for the flagship analyses: tuning of the machinery to study $B_{\rm S}$ mixing, $\Delta\Gamma_{\rm S}$, $\Lambda_{\rm b}$, charmless B-decays and many other topics unique to Tevatron is in progress.


CDFII is underway to produce exciting new results

Backup Slides

Luminosity


- >Goals for the RunII:
 - 2x10³² cm⁻²sec⁻¹ with Recycler
 - 2 fb-1 RunII
- ➤ Today:
 - 3.7×10³¹ cm⁻²sec⁻¹
 - 7 pb-1/week
 - ~70 pb⁻¹ available for winter conferences


Still a factor 1.3÷2 below expectations, but constantly in progress

~×5 during 2002

U. TONEIII - DETTYSICS OF COT - MOTIONO LVV - MOTIC

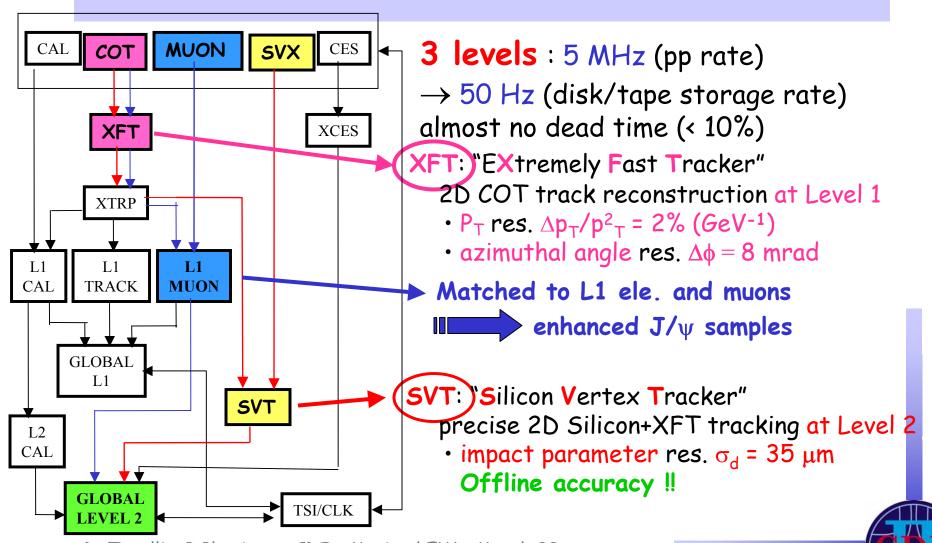
Quadrant of CDF II Tracker

TOF: 100ps resolution, 2 sigma K/π separation for tracks below 1.6 GeV/c (significant improvement of B_s flavor tag effectiveness)

COT: large radius (1.4 m) Drift C.

- 96 layers, 100ns drift time
- Precise P_T above 400 MeV/c
- Precise 3D tracking in $|\eta|<1$

 $\sigma(1/P_{T}) \sim 0.1\% GeV^{-1}$; $\sigma(hit) \sim 150 \mu m$


• dE/dx info provides 1 sigma K/π separation above 2 GeV

SVX-II + ISL: 6 (7) layers of double-side silicon (3cm < R < 30cm)

- Standalone 3D tracking up to $|\eta| = 2$
- Very good I.P. resolution: $\sim 30 \mu m$ ($\sim 20 \mu m$ with Layer00)

LAYER 00: 1 layer of radiation-hard silicon at very small radius (1.5 cm) (achievable: 45 fs proper time resolution in $B_s \to D_s \pi$)

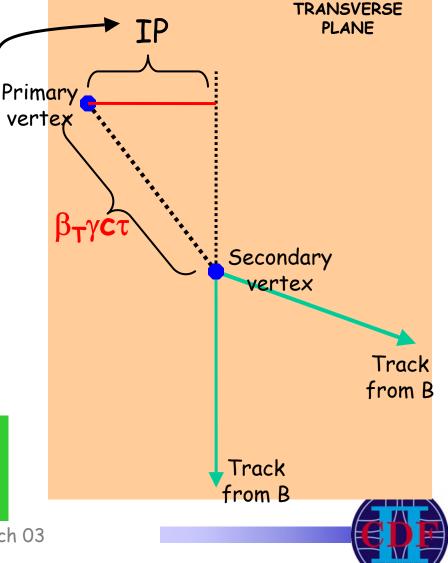
CDFII Trigger system

Trigger on displaced vertices

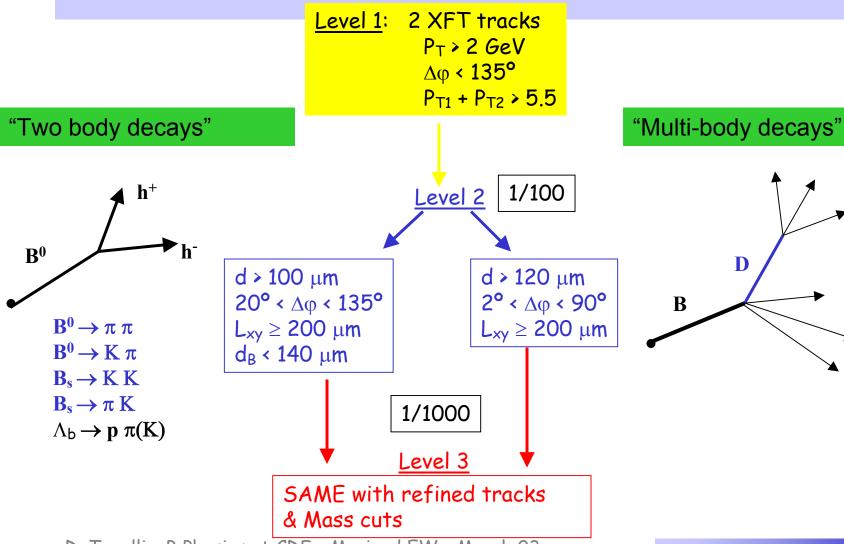
Typical $\beta \gamma c \tau$ for B hadrons:

 \sim 2×370÷500 μ m \sim 0.5 ÷1 mm

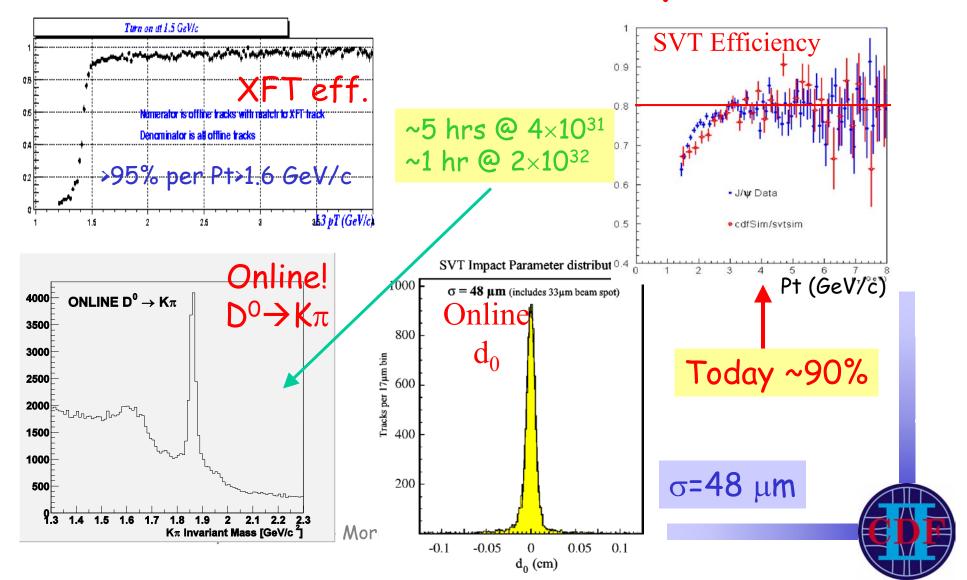
Typical resolution on IP "impact parameter" with silicon vertex detector is:

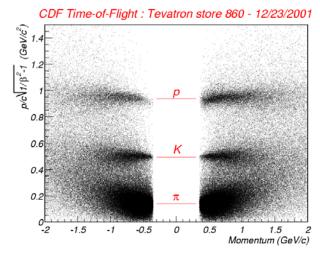

 σ_{IP} = 30 μ m \otimes Beam Spot \cong 50 μ m

× IP discriminates B from background:

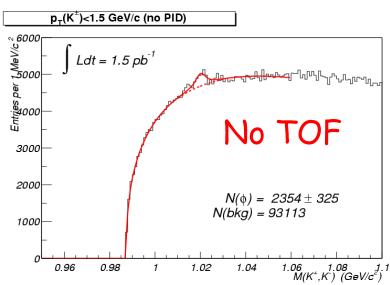

- IP(B tracks) >> IP(BG tracks)
- Available at second Level of Trigger

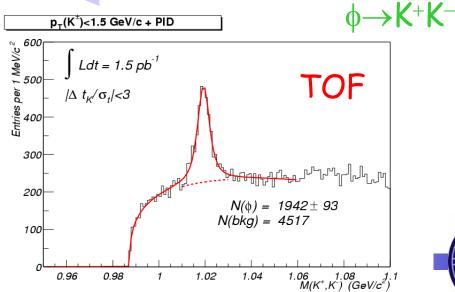
2D Si tracks within 20µs


Online, deadtimeless

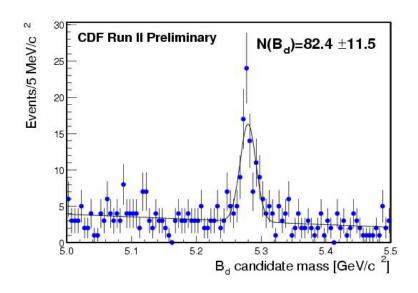

Hadronic Triggers

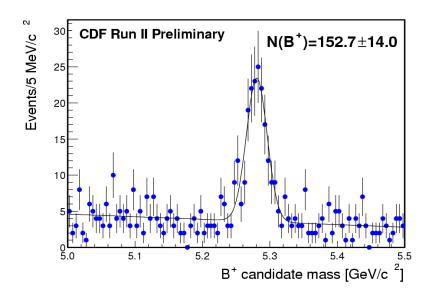
Trigger (XFT+SVT): Performance today ...

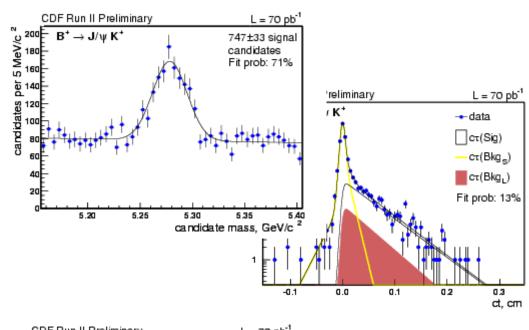

TOF: performance today ...

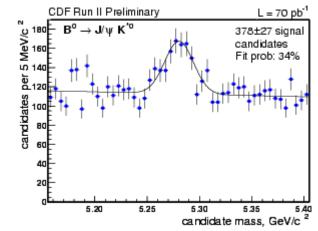


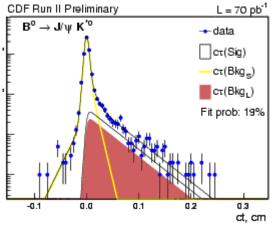
Resolution ~120 ps (first calibration round)
Already useful for PID


Reconstructed mass VS p


BG reduction ×20 @ 80% eff.

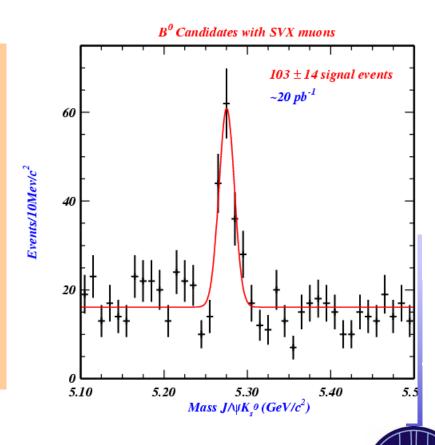

Masses





Lifetimes

$Di-muon: sin(2\beta)$

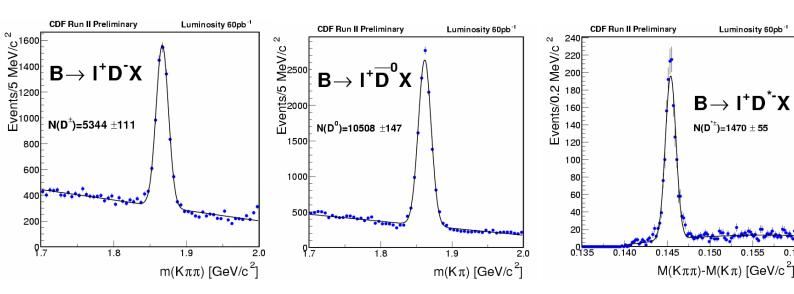

$$B_d \rightarrow J/\psi K_s \rightarrow [\mu\mu] K_s$$

Benchmark of B physics performance of detector:

 $sin(2\beta)$ analysis uses all experimental ingredients and RunI cross-check:

- -Reconstruction (Vertexing)
- -Time dependent Asymmetry
- -Flavor Tagging (dominates in error)

Yield = RunI x 5



Displaced track + lepton (1): semileptonic B

High statistics, excellent S/N ratio wrt to RunI:

Signal yield ~ RunI \times 5 , S/N ~ RunI \times 2

Mass, lifetimes x-check and use this sample to measure effective dilution of tagging algorithms

D. Tonelli - B Physics at CDF - Moriond EW - March 03

γ via $B^0 \rightarrow \pi^+\pi^- / B_s \rightarrow K^+K^-$

- CDF not "optimized" to measure final states with π^0 , γ
 - Measurement of α in B \rightarrow h⁺h⁻ not competitive with B-factories
- Promising alternative approach (R.Fleischer):
 - $B^0 \rightarrow \pi^+\pi^-$ measures sin2($\beta+\gamma$) with O(30%) penguin pollution
 - Contamination is canceled using $B_s \rightarrow K^+K^-$ up to U-spin symmetry breaking O(20%)

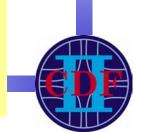
$$B^{0} \rightarrow \pi^{+}\pi^{-}$$

$$b \qquad W^{-} \leftarrow \mathbf{\bar{u}}$$

$$A_{CP}(t) = A_{CP}^{dir} \times \cos \Delta Mt + A_{CP}^{mix} \times \sin \Delta Mt$$

$$A_{CP}^{dir}(\pi \pi) = -2d \sin \theta \sin \gamma + O(d^{2})$$

$$A_{CP}^{dir}(KK) = \frac{2\lambda^{2}}{d(1-\lambda^{2})} \sin \theta \sin \gamma + O((\lambda^{2}/d)^{2})$$


$$A_{CP}^{mix}(KK) = \frac{2\lambda^{2}}{d(1-\lambda^{2})} \cos \theta \sin \gamma + O((\lambda^{2}/d)^{2})$$

$$A_{CP}^{mix}(\pi \pi) = \sin 2(\beta + \gamma) + 2d \cos \theta \times$$

$$[\cos \gamma \sin 2(\beta + \gamma) - \sin(2\beta + \gamma)] + O(d^{2})$$

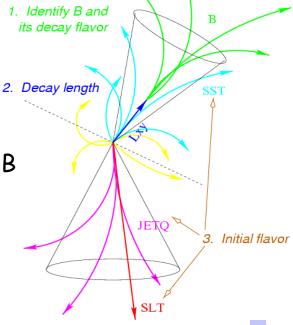
Decayes related by exchange $d\leftrightarrow s$ (SU(3) U-spin)

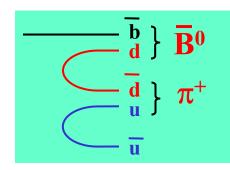
- Measurement of the 4 time-dependent asymmetries
- Combined fit to the 4 experimental observables ($\sin(2\beta)$ from $J/\psi K_s$):
- d=P/T ~ 0.3, θ =strong phase of the ratio P/T, γ , β weak phases

B flavour tagging

"Identify the flavor of B at production"

Crucial item for mixing measurements

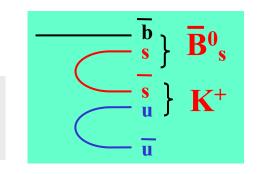

OST (opposite side tagging):


B's are produced in pairs \rightarrow measure flavor of opposite B

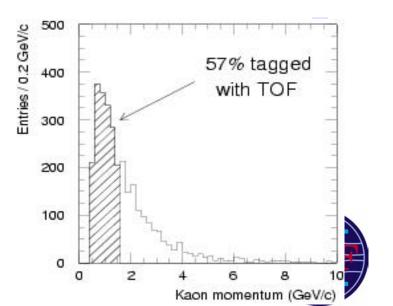
- >JETQ: sign of the weighted average charge of opposite B-Jet
- SLT: identify the soft lepton from semileptonic decay of opposite B

<u>SST</u> (same side tagging):

- $\overline{B^0}$ (B0) is likely to be accompanied close by a π^+ (π^-)
- > Search for the track with minimum PTREL



NEW: "Kaon b-taggers"


- Exploit K/π separation of new TOF
- · Well suited for strange B mesons

Same Side K: a $\overline{B^0}_s$ ($\overline{B^0}_s$) is likely to be accompanied close by a K+ (K-) from fragmentation

Opposite Side K: due to b→c→s it is more likely that a B meson will contain in final state a K- than a K+

 \Rightarrow to identify a B_s^0 look for a K- from the decay of the opposite B

B Flavor tagging in CDF

Total Tagging Effectiveness

εD ² (%)	RunI	RunII	
		Bo	B_{s}
OS Soft Lept	1.7	1.7	1.7
OS Jet Charge	3.0	3.0	3.0
OS Kaon		2.4 (0)	2.4 (0)
SST	1.0	1.9 (1.4)	
SST Kaon			4.2 (1.0)
Total	5.7	9.0 (6.3)	11.3 (5.7)

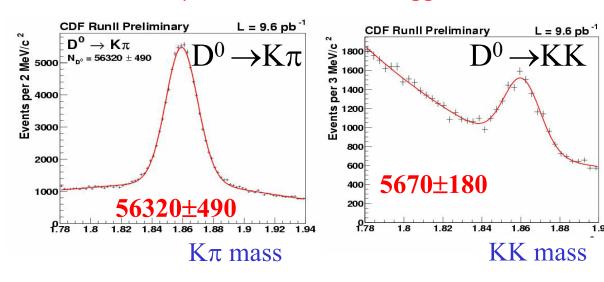
ε: efficiency

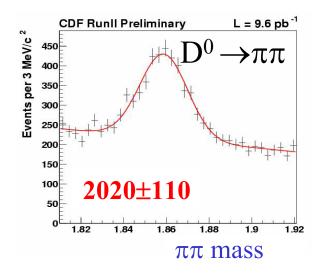
How many times it is possible to apply the tag

 $D = (1-2P_w)$: dilution How many times the tag is wrong

 ϵD^2 : determines the effective statistics of the sample:

$$S \rightarrow \epsilon D^2 S$$


$$A_{\text{mis}} = DA$$
 $\delta A \propto \frac{1}{\sqrt{\epsilon D^2 S}}$


*Without TOF

• Through identification of π , K (e p) the TOF allows ~doubling ϵD^2 for B^0 and B_S

Lots of Charm from hadr. triggers:

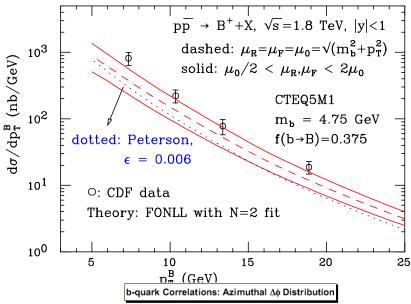
With ~10 pb-1 of "hadronic trigger" data:

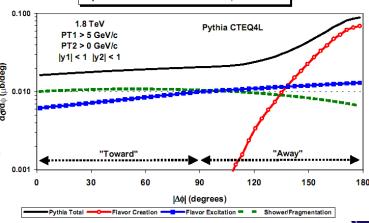
Relative BR of Cabibbo-suppressed D⁰ decays:

$$\Gamma(D\rightarrow KK)/\Gamma(D\rightarrow K\pi)$$
 = 11.17 ± 0.48 ± 0.98 (syst) % $\Gamma(D\rightarrow \pi \pi)/\Gamma(D\rightarrow K\pi)$ = 3.37 ± 0.20 ± 0.16(syst) %

Already competitive with CLEO2 results (10fb-1 @ Y(45))

O(10⁷) fully reconstructed decays in 2fb-1


- ⇒ Foresee a quite interesting charm physics program:
 - D cross sections,
 - · CP asymmetries and Mixing in D sector, Rare decays, ...


Production

- Wide production of all B hadron species ->
 - Tevatron ideal environment to study production mechanisms
- X-section pp→B+X measured in RunI is a factor 1.7 above QCD expectations
- Rich event sample will allow precise test of the observed effect.

- · High statistics + improved acceptance
- > precision measurements of the correlations in bb production (separation of various production mechanisms)
 - D. Tonelli B Physics at CDF Moriond EW Marc

... possible explanation (Cacciari/Nason)

